Ammonia solution strengthened three-dimensional macro-porous graphene aerogel.
نویسندگان
چکیده
Recently, many approaches were applied for assembling graphene sheets into a three-dimensional structure. However, it is still a great challenge to obtain a three-dimensional macroporous graphene network with high mechanical strength after drying. Herein, an ammonia strengthened three-dimensional graphene aerogel was prepared. Based on graphene chemistry and ice physics, the mechanical strength of graphene aerogel was improved greatly when the graphene hydrogel was treated by ammonia solution at an ambient temperature. The results demonstrated that the three-dimensional structure of graphene aerogels was destroyed thoroughly without ammonia solution treatment; conversely, the three-dimensional structure was maintained and the compressive strength was improved to 152 kPa at the static load after it was treated by ammonia solution at 90 °C for only 1 h. This phenomenon is due to two reasons: (1) the low freezing point of ammonia solution, which effectively retarded its freezing and then kept the porous structure undestroyed; (2) the reaction between ammonia and graphene hydrogel, which brought some covalent bonds among graphene sheets. We believe our efforts may pave the way for the development and application of three-dimensional graphene based materials.
منابع مشابه
A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments
Marine pollution caused by frequent oil spill accidents has brought about tremendous damages to marine ecological environment. Therefore, the facile large-scale preparation of three-dimensional (3D) porous functional materials with special wettability is in urgent demand. In this study, we report a low-cost and salt-tolerant superoleophobic aerogel for efficient oil/seawater separation. The aer...
متن کاملCore-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction
Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-...
متن کاملHighly compressible 3D periodic graphene aerogel microlattices
Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered a...
متن کاملThree-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries
A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S) batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide) aerogel (S/AC/GA) cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced sel...
متن کاملThree-dimensional N,B-doped graphene aerogel as a synergistically enhanced metal-free catalyst for the oxygen reduction reaction.
Here, a novel N,B-doped graphene aerogel, abbreviated as N,B-GA, was obtained via a two-step approach and served as a metal-free catalyst for the oxygen reduction reaction (ORR). This two-step method involved a hydrothermal reaction and a pyrolysis procedure, guaranteeing the efficient insertion of the heteroatoms. The resulting three-dimensional (3D) N,B-GA obtained at pyrolysis temperature of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 5 12 شماره
صفحات -
تاریخ انتشار 2013